Assessment of Climate Change Impacts on the Hydroclimatic Response in Burundi Based on CMIP6 ESMs

Author:

Kim Jeong-BaeORCID,Habimana Jean de Dieu,Kim Seon-HoORCID,Bae Deg-HyoORCID

Abstract

Burundi is susceptible to future water-related disasters, but examining the influence of climate change on regional hydroclimatic features is challenging due to a lack of local data and adaptation planning. This study investigated the influence of climate change on hydroclimate-focused changes in the climatology of heavy precipitation (and streamflow) means and extremes based on the multi-model ensemble mean of earth system models in the sixth phase of the Coupled Model Intercomparison Project (CMIP). For runoff analysis, hydrologic responses to future climate conditions were simulated using the Soil and Water Assessment Tool (SWAT) model over the Ruvubu River basin, Burundi. Temperature increases by 5.6 °C, with strong robustness, under future climate conditions. The mean annual precipitation (and runoff) undergoes large seasonal variations, with weak robustness. Precipitation (and streamflow) changes between the wet and dry seasons differ in signal and magnitude. However, alterations in both the amount and frequency of precipitation reveal the intensification of the water cycle due to anthropogenic climate change. Thus, the highest variability in the maximum daily streamflow is shown in months of long wet seasons, especially in the far future (2085). Without considering the regional climate characteristics and shared socioeconomic pathway (SSP) scenarios, this behavior is expected to be enhanced in 2085 (compared with 2045) and increase the severity of extreme precipitation and flood risk. Climate change will cause alterations in the magnitude and seasonal distributions of extreme precipitation (and streamflow). These findings could be important for flood planning and mitigation measures to cope with climate change in Burundi.

Funder

Korea Environmental Industry and Technology Institute

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3