MgO-Based Board Materials for Dry Construction Are a Tool for More Sustainable Constructions—Literature Study and Thermal Analysis of Different Wall Compositions

Author:

Švajlenka JozefORCID,Kozlovská Mária,Mokrenko Daria

Abstract

Growing global environmental problems force us to think about their impact and search for ways to protect the environment. While the construction industry and the production of construction materials contribute to environmental pollution, they also offer great potential for addressing many environmental problems. Important opportunities exist in the use and processing of a whole host of industrial and construction waste and in the use of mineral resources. Among such mineral resources is magnesite, whose deposits in Slovakia are abundant. The current sustainability trends impose strict requirements on construction materials and products, favoring solutions with sufficient ecological and efficiency performance characteristics. With this focus on efficient and sustainable solutions in mind, the objective of this research was to analyze magnesium oxide construction boards, as they are the most commonly used construction product based on MgO. The specific MgO-based boards that were studied were applied in selected constructions built using the so-called dry method of construction and were compared with traditional material solutions. The research methodology is based on an analysis of computational models of the proposed variants to determine selected thermal-technical parameters. The analyses of external and interior structures presented in this work suggest that when boards based on MgO and traditional materials are used for coating constructions built using the dry method of construction, the former provide certain benefits in terms of energy accumulation, improving living comfort, and in terms of the fire resistance of constructions, improving overall safety. The conclusion of the presented article is devoted to discussions with works that addressed various perspectives on the application of MgO in the field of materials research. The findings from this analysis are beneficial especially in terms of expanding the knowledge in the area.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3