The Challenge Posed by Emerging Environmental Contaminants: An Assessment of the Effectiveness of Phenoxyethanol Biological Removal from Groundwater through Mesocosm Experiments

Author:

Ducci Laura1ORCID,Rizzo Pietro1ORCID,Bucci Antonio2ORCID,Pinardi Riccardo1,Monaco Pamela2,Celico Fulvio1ORCID

Affiliation:

1. Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 157/A, 43124 Parma, Italy

2. Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, 86090 Pesche, Italy

Abstract

The occurrence of emerging pollutants (EPs) such as pharmaceuticals and personal care products (PPCPs) has raised serious concerns about the possible adverse effects on ecosystem integrity and human health. Wastewater treatment facilities appear to be the main sources of PPCPs released in aquatic environments. This research examines the effectiveness of groundwater microbial community activities to remove phenoxyethanol (Phy-Et), currently exploited as a preservative in many cosmetic formulations at a maximum concentration of 1% but which has shown, at higher levels of exposure, adverse systemic effects on animals. Mesocosm experiments were carried out for 28 days using two different concentrations of the substance (5.2 mg/L and 27.4 mg/L). The main results obtained through chemical and microbiological investigations revealed a significant Phy-Et reduction (≈100% when added at a concentration of 5.2 mg/L and ≈84% when added at a concentration of 27.4 mg/L), demonstrating that some autochthonous microorganisms in the analyzed samples played a “key role” in removing this compound, despite its proven antimicrobial activity. Nevertheless, the decrease in the “natural attenuation” efficacy (≈16%) when using higher concentrations of the chemical suggests the existence of a “dose-dependent effect” of Phy-Et on the process of biodegradation. Biomolecular investigations carried out through next-generation sequencing (NGS) revealed (i) the presence of a significant fraction of hidden microbial diversity to unravel, (ii) variations of the composition and species abundance of the groundwater microbial communities induced by Phy-Et, and (iii) a biodiversity reduction trend correlated to the increase of Phy-Et concentrations. Overall, the preliminary information obtained from the experiments carried out at the laboratory scale appears encouraging, although it reflects only partially the complexity of the phenomena that occur in natural environments and influences their “auto-purification capability”. Accordingly, this research paves the way for more in-depth investigations to develop appropriate tools and protocols to evaluate the occurrence and fate of Phy-Et in nature and assess the impact of its release and the effects of long-term exposure (even at low concentrations) on ecosystems and health.

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3