Processing of Legume Green Manures Slowdowns C Release, Reduces N Losses and Increases N Synchronisation Index for Two Years

Author:

Toleikiene Monika1ORCID,Arlauskiene Ausra2,Suproniene Skaidre1ORCID,Sarunaite Lina1ORCID,Capaite Gabriele1ORCID,Kadziuliene Zydre1

Affiliation:

1. Institute of Agriculture, Lithuanian Research Centre for Agriculture and Forestry, Instituto al. 1, LT-58344 Akademija, Lithuania

2. Joniškėlis Experimental Station, Lithuanian Research Centre for Agriculture and Forestry, Karpių 1, LT-39301 Joniškėlis, Lithuania

Abstract

The number of livestock farms decreased by 40% in Europe over the last 10-year period. Stockless organic cropping systems started to dominate in many intensive agricultural regions in Europe. Developing the sustainable management of an organic stockless agroecosystem is related to guaranteeing self-sufficiency in nitrogen (N) supply, maintaining high grain yields, and promoting carbon (C) sequestration in the soil. The aim of this study was to investigate if the processed legume green manures can be an alternative to granulated cattle manure and direct ploughing of legume biomass in order to develop the sustainability of the stockless organic cropping system. The decomposition rate and C and N release were observed for green manures made of fermented red clover and composted red clover with wheat straw. Fresh red clover biomass and granulated cattle manure were used for the comparison. Results of the 3-year field experiment showed that technologically processed legume biomass had a positive effect on the productivity of crops at least two years in rotation. Fermented red clover and red clover compost increased N use efficiency by 15% and biomass output efficiency by 16% compared with fresh red clover biomass. Processed legume green manures significantly increased the synchronisation index between crop N demand and N supply. In autumn, incorporated fresh red clover biomass lost 65.6% of its initial C and 37.6 kg ha−1 (50.1%) of its initial N under decomposition in the first non-growing season. It also increased mineral N losses deeper into the subsoil by 52.7%. Meanwhile, fermented red clover and red clover compost released 43% of its N during the first crop growing season, sustained at least one year slower C release to the soil, promoted ecosystem productivity, prevented mineral N losses to subsoil and gained high N synchrony indexes. The best N synchrony was achieved using fermented red clover, with a higher decomposition rate positively significantly correlated (r = 0.47–0.78, p < 0.05) with grain yield, total biomass, protein content and total N accumulated in the plant of spring wheat and spring barley.

Funder

Research Council of Sciences

Zichichi Scholarship of the World Federation of Scientists

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3