Investigation on the Confined Breakage Characteristics of Calcareous Sand in the South China Sea Integrated Using Relative Breakage Ratio and Fractal Dimension

Author:

Zhu Jianfeng1ORCID,Zheng Qiqi1,Yang Hao12

Affiliation:

1. School of Civil Engineering and Architecture, Zhejiang University of Science and Technology, Hangzhou 310023, China

2. Institute of Geotechnical Engineering (IGT), University of Natural Resources and Life Sciences, Feistmantelstrasse 4, 1180 Vienna, Austria

Abstract

Calcareous sand, ubiquitous in the geotechnical makeup of the South China Sea, exhibits both compressibility and vulnerability to fragmentation when subjected to external loading, spanning a spectrum from typical to extreme conditions. This investigation aims to quantitatively assess the compression and particle breakage characteristics of calcareous sand under varied parameters, including relative density, saturation, applied loads, and loading paths, specifically focusing on sustainable geotechnical methodologies. Through a series of confined compression tests, this evaluation employed the relative breakage ratio and fractal dimension as key evaluative metrics. The results indicated that employing this integrated approach offered a more comprehensive understanding of calcareous sand breakdown mechanisms than relying on a singular particle breakage index. Furthermore, an increase in relative density can induce a transition in particle contact behavior, shifting from point-to-point interactions to face-to-face contact, thereby reducing inter-particle stress and minimizing grain breakage, particularly under loads below 200 kPa. Increasing loads exacerbated particle breakage, with finer particles predominantly initiating this process. During reloading, pore ratios across various load levels surpass those observed during initial loading, except at 1600 kPa, where a decline in pore ratio was noted, coinciding with pore water extrusion and the onset of new particle fracturing. The lubricating effect of water reduces inter-particle friction, enhancing stress concentration at particle edges and localized particle breakage, thereby increasing the presence of finer particles without significantly altering the overall structure. Notably, the influence of pore water pressure is evident during the reloading phase. These findings contribute to a refined theoretical framework for predicting coastal erosion risks and devising effective environmental protection strategies for sustainable coastal engineering practices.

Funder

National Nature Science Foundation of China

Commonweal Project of Zhejiang Province

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3