Abstract
This study considers incentive provisions for investment decisions related to waste heat recovery system (WHRS) installations on ships to reduce CO2 emissions and improve ships’ engine efficiency. The economic assessment of WHRS installations in the shipping sector is not widely covered in the literature. A reason for this might be that the conventional financial evaluation of sensitive choices is commonly done through capital budgeting methods, which are not flexible enough to integrate future changes in fuel prices and long-term aspects of other costs. Thus, this work evaluates the WHRS investment using the classical budgeting instruments as well as the real-options approach (a more sophisticated approach) to accommodate the presumed expected future changes in the volatile maritime markets. Following the methodology of triangulation, three case studies of ships with varying operational conditions empirically validate the result to depict the practical use of the real-options evaluation method in investment assessment. The capital budgeting analysis reveals that the investment in maritime WHRS technology is only economically favorable under certain frame conditions projected in the work that shows a more realistic assessment of the project.
Funder
European Regional Development Fund
Subject
Ocean Engineering,Water Science and Technology,Civil and Structural Engineering
Reference37 articles.
1. Ship Energy Efficiency—Status and Guidance,2013
2. Emission Reduction Measures in Maritime Shipping;Lappi,2015
3. Real options analysis of abatement investments for sulphur emission control compliance
4. Maritime Energy Contracting for Clean Shipping
5. Strategic Energy Partnership in Shipping;Olaniyi,2017
Cited by
19 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献