Prediction of Ocean Weather Based on Denoising AutoEncoder and Convolutional LSTM

Author:

Kim Ki-SuORCID,Lee June-Beom,Roh Myung-IlORCID,Han Ki-Min,Lee Gap-Heon

Abstract

The path planning of a ship requires much information, and one of the essential factors is predicting the ocean environment. Ocean weather can generally be gathered from forecasting information provided by weather centers. However, these data are difficult to obtain when satellite communication is unstable during voyages, or there are cases where forecast data for a more extended period of time are needed for the operation of the fleet. Therefore, shipping companies and classification societies have attempted to establish a model for predicting the ocean weather on its own. Historically, ocean weather has been primarily predicted using empirical and numerical methods. Recently, a method for predicting ocean weather using deep learning has emerged. In this study, a deep learning model combining a denoising AutoEncoder and convolutional long short-term memory (LSTM) was proposed to predict the ocean weather worldwide. The denoising AutoEncoder is effective for removing noise that hinders the training of deep learning models. While the LSTM could be used as time-series inputs at specific points, the convolutional LSTM can use time-series images as inputs, making them suitable for predicting a wide range of ocean weather. Herein, using the proposed model, eight parameters of ocean weather were predicted. The proposed learning model predicted ocean weather after one week, showing an average error of 6.7%. The results show the applicability of the proposed learning model for predicting ocean weather.

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3