Arctic Vision: Using Neural Networks for Ice Object Classification, and Controlling How They Fail

Author:

Pedersen Ole-MagnusORCID,Kim EkaterinaORCID

Abstract

Convolutional neural networks (CNNs) have been shown to be excellent at performing image analysis tasks in recent years. Even so, ice object classification using close-range optical images is an area where their use has barely been touched upon, and how well CNNs perform this classification task is still an open question, especially in the challenging visual conditions often found in the High Arctic. The present study explores the use of CNNs for such ice object classification, including analysis of how visual distortion of optical images impacts their performance and comparisons to human experts and novices. To account for the model’s tendency to predict the presence of very few classes for any given image, the use of a loss-weighting scheme pushing a model towards predicting a higher number of classes is proposed. The results of this study show that on clean images, given the class definitions and labeling scheme used, the networks perform better than some humans. At least for some classes of ice objects, the results indicate that the network learned meaningful features. However, the results also indicate that humans are much better at adapting to new visual conditions than neural networks.

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3