Abstract
Renewable subsidies and mandates currently play a central role in the environmental and energy policy in the United States, one of the world’s top greenhouse gas emitters. Therefore, accurately estimating the environmental benefits from wind energy is key to evaluating the existing policies and setting future directions and has been studied within a growing body of the literature. However, most of the existing studies do not take the intermittency into account, and the small number of studies that do only study a relatively short time period limiting the extent to which they can be informative within different ranges of wind generation capacity. In this paper, we present the first estimates of the environmental benefits of wind energy generation using a dataset that spans well over a decade. Specifically, we use 13 years of hourly and sub-hourly data to estimate the causal effect of wind generation and its intermittency on CO2, NOx, and SO2 emissions from the electricity sector in Texas. Additionally, we compared the full sample results to those from sub-samples where the dataset is divided into subgroups based on wind output level. We found that while wind generation clearly has a statistically significant negative marginal effect on all pollutants we studied, the marginal effect of intermittency varies across different wind output levels in a highly irregular way. Our findings suggest that conducting pooled analyses has the potential to mask the irregularity in the variation of the effect of intermittency in wind generation across different wind output levels.
Subject
Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development
Reference26 articles.
1. Wind Energy Technology Data Update: 2020 Edition;Wiser,2020
2. Economic drivers of wind and solar penetration in the US
3. 2019 Cost of Wind Energy Review;Stehly,2020
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献