Abstract
Groundwater (GW) is a critical freshwater resource for billions of individuals worldwide. Rapid anthropogenic exploitation has increasingly deteriorated GW quality and quantity. Reliable estimation of complex hydrochemical properties of GW is crucial for sustainable development. Real field and experimental studies in an agricultural area from the significant sandstone aquifers (Wajid Aquifer) were conducted. For the modelling purpose, three types of computational models, including the emerging Hammerstein–Wiener (HW), back propagation neural network (BPNN), and statistical multi-variate regression (MVR), were developed for the multi-station estimation of total dissolved solids (TDS) (mg/L) and total hardness (TH) (mg/L). A geographic information system (GIS) was used for the spatial variability assessment of 32 hydrochemical and physical properties of the GW aquifer. A comprehensive visualized literature review spanning several decades was conducted in order to gain an understanding of the existing research and debates relevant to a particular GW and artificial intelligence (AI) study. The experimental data, pre-processing, and feature selection were conducted to determine the most dominant variables for AI-based modelling. The estimation results were evaluated using determination coefficient (DC), mean bias error (MBE), mean square error (MSE), and root mean square error (RMSE). The outcomes proved that TDS (mg/L) and TH (mg/L) correlated more than 90% and 70–85% with Ca2+, Cl−, Br−, NO3−, and Fe, and Na+, SO42−, Mg2+, and F− combinations, respectively. HW-M1 justified promising among all the models with MBE = 1.41 × 10−11, 1.14 × 10−14, and MSE = 7.52 × 10−2, 3.88 × 10−11 for TDS (mg/L), TH (mg/L), respectively. The accuracy proved merit for the overall development of and practical estimation of hydrochemical variables (TDS, TH) (mg/L) and decision-making benchmarks.
Subject
Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development
Reference53 articles.
1. Hydrochemical and Isotopic Investigation of the Groundwater from Wajid Aquifer in Wadi Al-Dawasir, Southern Saudi Arabia
2. Machine Learning Algorithms for the Forecasting of Wastewater Quality Indicators
3. Proposition of New Ensemble Data-Intelligence Models for Surface Water Quality Prediction
4. Groundwater level forecasting with artificial neural networks: A comparison of LSTM, CNN and NARX;Wunsch;Hydrol. Earth Syst. Sci. Discuss.,2020
5. Simulation of Groundwater Level Variations Using Wavelet Combined with Neural Network, Linear Regression and Support Vector Machine;Ebrahimi,2017
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献