Electrodeposition from a Graphene Bath: A Sustainable Copper Composite Alloy in a Graphene Matrix

Author:

Richardson Hayley,Bopp Charles,Ha Bao,Thomas Reeba,Santhanam Kalathur S.V.ORCID

Abstract

The leaching effect of metals has led to the introduction of government regulations for the safety of the environment and humans. This has led to the search for new alloys with long-lasting sustainability. Herein, we wish to report a new brass alloy containing carbon with a remarkable sustainability produced by electrodeposition from a graphene quantum dots bath. The electrochemical measurements were carried out using cyclic voltammetry, potentiodynamic analysis, and Tafel measurements, and the deposits were characterized by X-ray fluorescence spectroscopy (XRF), Raman imaging, X-ray diffraction (XRD), atomic force microscopy (AFM), and scanning electron microscopy (SEM) to understand the surface morphology and elemental compositions. The current–time transients in the potential-step electrolysis were used to investigate the nucleation and growth mechanism. The smooth and compact deposit obtained at −0.60 V showed a composition of Cu = 24.33 wt %; Zn = 0.089 wt %; and C = 75.57 wt %. The SEM and energy dispersion X-ray analysis revealed a surface morphology with a uniform distribution of the particles and the presence of Cu, Zn, and C. The corrosion density of the material is very much lower than that of conventional brass, suggesting a higher sustainability.

Publisher

MDPI AG

Subject

General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Mechanical Alloying of Aluminium Alloys;Advances in Chemical and Materials Engineering;2024-02-27

2. Current and future applications of mechanically alloyed materials;Mechanical Alloying of Ferrous and Non-Ferrous Alloys;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3