Biomimetics and Composite Materials toward Efficient Mobility: A Review

Author:

Boaretto Joel,Fotouhi Mohammad,Tende Eduardo,Aver Gustavo Francisco,Marcon Victoria Rafaela Ritzel,Cordeiro Guilherme LuísORCID,Bergmann Carlos PérezORCID,Vannucchi de Camargo FelipeORCID

Abstract

The development of new materials has always been strictly related to the rise of new technologies and progressively efficient systems. However, cutting-edge materials might not be enough to ensure the effectiveness of a given product if the design guidelines used do not favor the specific advantages of this material. Polymeric composites are known for their excellent mechanical properties, but current manufacturing techniques and the relatively narrow expertise in the field amongst engineers impose the challenge to provide the most suitable designs to certain applications. Bio-inspired designs, supported by thousands of years of evolution of nature, have shown to be extremely profitable tools for the design of optimized yet structurally complex shapes in which the tailoring aspect of polymeric composites perfectly fit. Bearing in mind the current but old-fashioned designs of auto-parts and vehicles built with metals with little or no topological optimization, the present work addresses how biomimicry is being applied in the mobility industry nowadays to provide lightweight structures and efficient designs. A general overview of biomimicry is made regarding vehicles, approaching how the use of composite materials has already contributed to successful cases.

Funder

Engineering and Physical Sciences Research Council

Publisher

MDPI AG

Subject

General Medicine

Reference79 articles.

1. Biomimicry: Innovation Inspired by Nature;Benyus,2002

2. Ecology: From Individuals to Ecosystems;Begon,2005

3. Fabrication of novel biomaterials through molecular self-assembly

4. Design Architectures in Biology

5. An idea man

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3