Abstract
Since 1850, the rise in global mean surface temperatures (GMSTs) from increasing atmospheric concentrations of greenhouse gases (GHGs) has exhibited three ~30-year hiatus (surface cooling) episodes. The current hiatus is often thought to be generated by similar cooling episodes in Pacific or Atlantic ocean basins. However, GMSTs as well as reconstructed Atlantic and Pacific ocean basin surface temperatures show the presence of similar multidecadal components generated from a three-dimensional analysis of differential gravitational (tidal) forcing from the sun and moon. This paper hypothesizes that these episodes are all caused by external tidal forcing that generates alternating ~30-year zonal and meridional circulation regimes, which respectively increase and decrease GMSTs through tidal effects on sequestration (deep ocean heat storage) and energy redistribution. Hiatus episodes consequently coincide with meridional regimes. The current meridional regime affecting GMSTs is predicted to continue to the mid-2030s but have limited tendency to decrease GMSTs from sequestration because of continuing increases in radiative forcing from increasing atmospheric GHGs. The tidal formulation also generates bidecadal oscillations, which may generate shorter ~12-year hiatus periods in global and ocean basin temperatures. The formulation appears to assimilate findings from disciplines as disparate as geophysics and biology.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献