The Carbon Sink of Mangrove Ecological Restoration between 1988–2020 in Qinglan Bay, Hainan Island, China

Author:

Jia PeihongORCID,Huang Weida,Zhang Zhouyao,Cheng Jiaxuan,Xiao Yulong

Abstract

As the world’s largest reactive carbon reservoir, the ocean plays a critical role in global climate change. Among coastal plant ecosystems, mangroves have the highest carbon storage efficiency and are prone to the impact of anthropogenic activities. In this study, taking the mangrove wetland of Qinglan Bay as an example, we extracted information on mangrove coastal surface change from 1988 to 2020 based on multi-temporal Landsat remote sensing data through field ground surveys and laboratory analysis and used the InVEST model to calculate the spatial and temporal structure of blue carbon in the mangrove area to investigate the effects of mangrove change in an ecological restoration context. The result shows that the overall area of mangrove forests exhibited a decreasing trend from 1988 to 2020, and the area of mangroves decreased from 1559.34 ha to 737.37 ha of which 52.71% was transformed into aquiculture, construction, and farm land. Accordingly, the mangrove carbon sinks from 1988 to 2020 were significantly reduced and the carbon stock decreased at an annual tendency from 1,025,901.71 tons to 712,118.69 tons. With the implementation of mangrove restoration, the decline of mangrove forests has decreased since 2003, promoting the stabilization and enhancement of carbon sinks in the mangrove wetlands of Qinglan Bay. The results of this study provide a technical method to evaluate the carbon sink contribution of mangrove wetland restoration in Hainan Province, a scientific basis and methodological innovation to monitor the carbon sink of mangrove cover change in larger regions of China, a theoretical basis to select criteria for mangrove restoration, and a scientific and systematic management strategy for ecological and mangrove restoration on Hainan Island.

Funder

National Social Science Found of China

Publisher

MDPI AG

Subject

Forestry

Reference30 articles.

1. Bridging research and policy;Keating;Nat. Clim. Chang.,2021

2. Global Change, Carbon Cycle and Storage in Terrestrial Ecosystem;Yu,2003

3. Recent Advances in Atmospheric Ionization Mass Spectrometry: Developments and Applications

4. Carbon Cycle and “Blue Carbon” Potential in China’s Coastal Zone;Wang;Bull. Chin. Acad. Sci.,2016

5. Mangroves: Ecology, Biodiversity and Management;Rastogi,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3