Incorporating Wearable Technology for Enhanced Rehabilitation Monitoring after Hip and Knee Replacement

Author:

Lebleu Julien1ORCID,Daniels Kim23ORCID,Pauwels Andries1,Dekimpe Lucie1,Mapinduzi Jean34,Poilvache Hervé5ORCID,Bonnechère Bruno236ORCID

Affiliation:

1. moveUp, 1000 Brussels, Belgium

2. Department of PXL—Healthcare, PXL University of Applied Sciences and Arts, 3500 Hasselt, Belgium

3. REVAL Rehabilitation Research Center, Faculty of Rehabilitation Sciences, Hasselt University, 3590 Diepenbeek, Belgium

4. Filière de Kinésithérapie et Réadaptation, Département des Sciences Clinique, Institut National de la Santé Publique, 6807 Bujumbura, Burundi

5. Orthopedic Surgery Department, CHIREC, 1420 Braine-l’Alleud, Belgium

6. Technology-Supported and Data-Driven Rehabilitation, Data Sciences Institute, Hasselt University, 3590 Diepenbeek, Belgium

Abstract

Osteoarthritis (OA) poses a growing challenge for the aging population, especially in the hip and knee joints, contributing significantly to disability and societal costs. Exploring the integration of wearable technology, this study addresses the limitations of traditional rehabilitation assessments in capturing real-world experiences and dynamic variations. Specifically, it focuses on continuously monitoring physical activity in hip and knee OA patients using automated unsupervised evaluations within the rehabilitation process. We analyzed data from 1144 patients who used a mobile health application after surgery; the activity data were collected using the Garmin Vivofit 4. Several parameters, such as the total number of steps per day, the peak 6-minute consecutive cadence (P6MC) and peak 1-minute cadence (P1M), were computed and analyzed on a daily basis. The results indicated that cadence-based measurements can effectively, and earlier, differ among patients with hip and knee conditions, as well as in the recovery process. Comparisons based on recovery status and type of surgery reveal distinctive trajectories, emphasizing the effectiveness of P6MC and P1M in detecting variations earlier than total steps per day. Furthermore, cadence-based measurements showed a lower inter-day variability (40%) compared to the total number of steps per day (80%). Automated assessments, including P1M and P6MC, offer nuanced insights into the patients’ dynamic activity profiles.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3