VISOR-NET: Visibility Estimation Based on Deep Ordinal Relative Learning under Discrete-Level Labels

Author:

Xun Lina,Zhang Huichao,Yan Qing,Wu Qi,Zhang Jun

Abstract

This paper proposes a novel end-to-end pipeline that uses the ordinal information and relative relation of images for visibility estimation (VISOR-NET). By encoding ordinal information into a set of relatively ordered image pairs, VISOR-NET can learn a global ranking function effectively. Due to the lack of real scenes or continuous labels in public foggy datasets, we collect a large-scale dataset that we term Foggy Highway Visibility Images (FHVI), which are taken from real surveillance scenes, and synthesize an INDoor Foggy images dataset (INDF) with continuous annotation. This work measures the estimation effectiveness on two public datasets and our FHVI dataset as a classification task and then on the INDF dataset as a regression task. Comprehensive experiments with existing deep-learning methods demonstrate the performance of the proposed method in terms of estimation accuracy, the convergence rate, model stability, and data requirements. Moreover, this method can extend inter-level visibility estimation to intra-level visibility estimation and can realize approximate regression estimation under discrete-level labels.

Funder

The National Key R&D Plan of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference44 articles.

1. Guide to Meteorological Instruments and Methods of Observation,1996

2. Fog – boon or bane?

3. An automated visibility detection algorithm utilizing camera imagery;Hallowell;Proceedings of the 23rd Conference on Interactive Information and Processing Systems for Meteorology, Oceanography, and Hydrology (IIPS),2007

4. Short-range visibility forecast by means of neural-network modelling: a case-study

5. Visibility in bad weather from a single image;Tan;Proceedings of the 2008 IEEE Conference on Computer Vision and Pattern Recognition,2008

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3