Site-Adaptation for Correcting Satellite-Derived Solar Irradiance: Performance Comparison between Various Regressive and Distribution Mapping Techniques for Application in Daejeon, South Korea

Author:

Dhata Elvina FaustinaORCID,Kim Chang Ki,Kim Hyun-GooORCID,Kim BoyoungORCID,Oh Myeongchan

Abstract

Satellite-derived solar irradiance is advantageous in solar resource assessment due to its high spatiotemporal availability, but its discrepancies to ground-observed values remain an issue for reliability. Site adaptation can be employed to correct these errors by using short-term high-quality ground-observed values. Recent studies have highlighted the benefits of the sequential procedure of a regressive and a distribution-mapping technique in comparison to their individual counterparts. In this paper, we attempted to improve the sequential procedure by using various distribution mapping techniques in addition to the previously proposed quantile mapping. We applied these site-adaptation techniques on the global horizontal irradiance (GHI) and direct normal irradiance (DNI) obtained from the UASIBS-KIER model in Daejeon, South Korea. The best technique, determined by a ranking methodology, can reduce the mean bias from −5.04% and 13.51% to −0.45% and −2.02% for GHI and DNI, respectively, and improve distribution similarity by 2.5 times and 4 times for GHI and DNI, respectively. Partial regression and residual plot analysis were attempted to examine our finding that the sequential procedure is better than individual techniques for GHI, whereas the opposite is true for DNI. This is an initial study to achieve generalized site-adaptation techniques for the UASIBS-KIER model output.

Funder

Korea Institute of Energy Research

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3