Comparative Thermodynamic Environmental and Economic Analyses of Combined Cycles Using Air and Supercritical CO2 in the Bottoming Cycles for Power Generation by Gas Turbine Waste Heat Recovery

Author:

Brahimi Faiza,Madani Baya,Ghemmadi Messaouda

Abstract

This study aims to improve existing fossil gas turbine power plants by waste heat recovery. These power plants function with an air simple cycle (ASC) and are implemented where water resources are limited. Modeling and simulation of ASC and two advanced energy conversion systems are performed. They are the gas turbine–air bottoming cycle (GT-ABC) and gas turbine–supercritical carbon dioxide bottoming cycle (GT-sc-CO2BC). The main intent is to assess the benefits of employing sc-CO2 as a working fluid in a closed Brayton bottoming cycle compared to air, based on the energetic and exergetic performance and economic and environmental impact. Analyses of ASC, GT-ABC, and GT-sc-CO2BC are performed for various topping gas turbine powers: large (plant 1); medium (plant 2); and low (plant 3). The results of the energetic and exergetic analyses indicate that there is a significant improvement in the output power (ranging from 22% to 25%); and energy and exergy efficiencies of GT-ABC and GT-sc-CO2BC (up to 8% and 11%, respectively) compared to that of ASC. To provide better insight into the behavior of these technologies and achieve their better integration, we investigate the influence of varying the bottoming compressor pressure ratio, the ambient temperature, and the gas flow rate in the bottoming cycle. The results of the environmental and economic analyses show that the amount of CO2 emissions in GT-sc-CO2BC is reduced by 10% more than in GT ABC. The results also show that GT-ABC improves the NPV between 17.69% and 30% but GT-sc-CO2BC improves it even more, between 25.79% and 33.30%.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3