Abstract
The development of low-cost electrode materials with enhanced activity and favorable durability for hydrogen evolution reactions (HERs) is a great challenge. MoS2 is an effective electrocatalyst with a unique layered structure. In addition, aluminosilica shells can not only provide more hydroxyl groups but also improve the durability of the catalyst as a protective shell. Herein, we have designed a hard-template route to synthesize porous yolk–shell MoS2@void@Aluminosilica microspheres in a NaAlO2 solution. The alkaline solution can directly etch silica (SiO2) hard templates on the surface of MoS2 microspheres and form a porous aluminosilica outer shell. The electrocatalytic results confirm that the MoS2@void@Aluminosilica microspheres exhibit higher electrocatalytic activity for HERs with lower overpotential (104 mV at the current density of −10 mA cm−2) and greater stability than MoS2 microspheres. The superior electrocatalytic activity of MoS2@void@Aluminosilica microspheres is attributed to the unique structure of the yolk@void@shell geometric construction, the protection of the aluminosilica shell, and the greater number of active sites offered by their nanosheet subunits. The design of a unique structure and new protection strategy may set up a new method for preparing other excellent HER electrocatalytic materials.
Funder
Key Natural Science Research Project for Colleges and Universities of Anhui Province
University Enterprise joint Research and Development Project
Open Project of Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献