Energy Disaggregation Using Multi-Objective Genetic Algorithm Designed Neural Networks

Author:

Laouali InoussaORCID,Gomes Isaías,Ruano Maria da GraçaORCID,Bennani Saad Dosse,Fadili Hakim El,Ruano AntonioORCID

Abstract

Energy-saving schemes are nowadays a major worldwide concern. As the building sector is a major energy consumer, and hence greenhouse gas emitter, research in home energy management systems (HEMS) has increased substantially during the last years. One of the primary purposes of HEMS is monitoring electric consumption and disaggregating this consumption across different electric appliances. Non-intrusive load monitoring (NILM) enables this disaggregation without having to resort in the profusion of specific meters associated with each device. This paper proposes a low-complexity and low-cost NILM framework based on radial basis function neural networks designed by a multi-objective genetic algorithm (MOGA), with design data selected by an approximate convex hull algorithm. Results of the proposed framework on residential house data demonstrate the designed models’ ability to disaggregate the house devices with excellent performance, which was consistently better than using other machine learning algorithms, obtaining F1 values between 68% and 100% and estimation accuracy values ranging from 75% to 99%. The proposed NILM approach enabled us to identify the operation of electric appliances accounting for 66% of the total consumption and to recognize that 60% of the total consumption could be schedulable, allowing additional flexibility for the HEMS operation. Despite reducing the data sampling from one second to one minute, to allow for low-cost meters and the employment of low complexity models and to enable its real-time implementation without having to resort to specific hardware, the proposed technique presented an excellent ability to disaggregate the usage of devices.

Funder

Programa Operacional Portugal 2020

Operational Program CRESC Algarve 2020

Fundação para a Ciência e Tecnologia

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3