Real-Time Power Quality Enhancement in a Hybrid Micro-Grid Using Nonlinear Autoregressive Neural Network

Author:

Satapathy AnshumanORCID,Nayak NiranjanORCID,Parida Tanmoy

Abstract

The extensive use of renewable energy sources (RESs) in energy sectors plays a vital role in meeting the present energy demand. The widespread utilization of allocated resources leads to multiple usages of converters for synchronization with the power grid, introducing poor power quality. The integration of distributed energy resources produces uncertainties which are reflected in the distribution system. The major power quality problems such as voltage sag/swell, voltage unbalancing, poor power factor, harmonics distortion (THD), and power transients appear during the transition of micro-grids (MGs). In this research, a single micro-grid is designed with PVs, wind generators, and fuel cells as distributed energy resources (DERs). A nonlinear auto regressive exogenous input neural network (NARX-NN) controller has been investigated in this micro-grid in order to maintain the above power quality issues within the specific standard range (IEEE/IEC standards). The performance of the NARX-NN controller is compared with PID and fuzzy-PID controllers. The single micro-grid is extended to design a three-phase large-scale realistic micro-grid structure to test the feasibility of the proposed controller. The realistic micro-grid is verified through addition of line-impedance, communication delay, demand response, and off-nominal situations. The proposed controller is also validated by simulating different test scenarios using MATLAB/Simulink and TMS320-based processor-in-loop (PIL) for real-time implementation.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3