Spatiotemporal Analysis of Hydrogen Requirement to Minimize Seasonal Variability in Future Solar and Wind Energy in South Korea

Author:

Oh Myeongchan,Kim BoyoungORCID,Yun Changyeol,Kim Chang Ki,Kim Jin-Young,Hwang Su-Jin,Kang Yong-Heack,Kim Hyun-GooORCID

Abstract

Renewable energy supply is essential for carbon neutrality; however, technologies aiming to optimally utilize renewable energy sources remain insufficient. Seasonal variability in renewable energy is a key issue, which many studies have attempted to overcome through operating systems and energy storage. Currently, hydrogen is the only technology that can solve this seasonal storage problem. In this study, the amount of hydrogen required to circumvent the seasonal variability in renewable energy supply in Korea was quantified. Spatiotemporal analysis was conducted using renewable energy resource maps and power loads. It was predicted that 50% of the total power demand in the future will be met using solar and wind power, and a scenario was established based on the solar-to-wind ratio. It was found that the required hydrogen production differed by approximately four-times, depending on the scenarios, highlighting the importance of supplying renewable energy at an appropriate ratio. Spatially, wind power was observed to be unsuitable for the physical transport of hydrogen because it has a high potential at mountain peaks and islands. The results of this study are expected to aid future hydrogen research and solve renewable energy variability problems.

Funder

Korea Institute of Energy Technology Evaluation and Planning

Korean Government

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference26 articles.

1. Jones, L.E. (2017). Renewable Energy Integration: Practical Management of Variability, Uncertainty, and Flexibility in Power Grids, Academic press.

2. Review of energy storage system for wind power integration support;Zhao;Appl. Energy,2015

3. Energy storage for mitigating the variability of renewable electricity sources: An updated review;Beaudin;Energy Sustain. Dev.,2010

4. MES (multi-energy systems): An overview of concepts and evaluation models;Mancarella;Energy,2014

5. Review and analysis of demonstration projects on power-to-X pathways in the world;Chehade;Int. J. Hydrog. Energy,2019

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3