Co-Firing Combustion Characteristics of Woodchips and Spent Mushroom Substrates in a 400 kWth Stoker-Type Boiler

Author:

Lee Hyun-Hee,Kang Sae-ByulORCID,Choi Jae-Joon,Youn Young-Jik,Kim Kyu-Won,Jeong Man-Soo,Byeon Jae-Kyung

Abstract

The simultaneous firing characteristics of woodchips and spent mushroom substrates (SMS) were studied in a stoker-type industrial boiler. The type of spent substrate intended for combustion consisted of oyster mushrooms. SMS from mushroom farms generally have a high water content. Dryers are therefore used for combustion. The moisture content of SMS was reduced to achieve low moisture to combust sufficiently at about 20%. First, the basic characteristics of the boiler were confirmed by conducting a woodchip combustion test under various operating loads of 30, 50, 70, and 100%. Thereafter, a simultaneous combustion test of woodchips and SMS was performed. During the experiment, exhaust gas concentrations in the boiler combustion chamber were measured, such as the temperature of oxygen (O2), carbon monoxide (CO), and nitrogen oxides (NOx). In addition, industrial and basic analyses were performed on woodchips and SMS. The main differences in the fuel analysis results between woodchips and SMS were ash, nitrogen, sulfur content and net calorific value. According to the analysis, the nitrogen content of SMS was 2.6%, which was 8.7 times higher than that of woodchips, and the ash content was also 14.8%, which was 18.5 times that of woodchips. As a result of the combustion experiment, the woodchip experiment revealed that the values of O2 and CO decreased and the combustion chamber temperature increased as the amount of fuel increased. Due to higher combustion temperature, thermal NOx also increased. When comparing this combustion test with the co-firing test, there was no significant difference in O2, CO, and combustion chamber temperature. However, with regard to the NOx value, the results showed a sharp increase from 64 ppm to 135 ppm. Although the NOx value increased, SMS had enough heat to be burned as fuel. Therefore, the utility of various agricultural byproducts as fuel has prospects for achieving an effective approach to energy cost reduction.

Funder

Korea Institute of Planning and Evaluation for Technology in Food, Agriculture and Forestry

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3