Analysis of the Effects of Grid-Connected Charging/Discharging Stations on Relay Protection

Author:

Wang Qingjie,Ma Jing,Shang Lei,Chen ShuangyinORCID

Abstract

The grid-connected operation of charging/discharging stations changes the original load, power supply, and network structures of the distribution network. It also affects the power flow level and direction and leads to a reduction in the sensitivity and reliability of the relay protection system. The grid connections may even lead to improper operation or failure of the relay protection protocols. In order to solve the above problems, this paper proposes a method that constructs the protection criteria by using the characteristics of the positive sequence comprehensive impedance after internal and external faults. Specifically, based on the difference in amplitude of the differential positive sequence impedance in the feeder after the charging/discharging station is connected to the grid, positive sequence comprehensive impedance is proposed for the purpose of establishing longitudinal differential protection. The results show that the vertical protection principle based on the positive sequence comprehensive impedance has a certain versatility for the protection of distribution networks with charging/discharging stations. Additionally, the protection principle has high sensitivity and is generally unaffected by transition resistance. The applicability of the proposed positive sequence comprehensive impedance vertical protection principle is verified by simulation.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3