Abstract
The grid-connected operation of charging/discharging stations changes the original load, power supply, and network structures of the distribution network. It also affects the power flow level and direction and leads to a reduction in the sensitivity and reliability of the relay protection system. The grid connections may even lead to improper operation or failure of the relay protection protocols. In order to solve the above problems, this paper proposes a method that constructs the protection criteria by using the characteristics of the positive sequence comprehensive impedance after internal and external faults. Specifically, based on the difference in amplitude of the differential positive sequence impedance in the feeder after the charging/discharging station is connected to the grid, positive sequence comprehensive impedance is proposed for the purpose of establishing longitudinal differential protection. The results show that the vertical protection principle based on the positive sequence comprehensive impedance has a certain versatility for the protection of distribution networks with charging/discharging stations. Additionally, the protection principle has high sensitivity and is generally unaffected by transition resistance. The applicability of the proposed positive sequence comprehensive impedance vertical protection principle is verified by simulation.
Funder
National Natural Science Foundation of China
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献