Dairy Wastewater as a Potential Feedstock for Valuable Production with Concurrent Wastewater Treatment through Microbial Electrochemical Technologies

Author:

Ganta Anusha,Bashir Yasser,Das SovikORCID

Abstract

A milk-processing plant was drafted as a distinctive staple industry amid the diverse field of industries. Dairy products such as yogurt, cheese, milk powder, etc., consume a huge amount of water not only for product processing, but also for sanitary purposes and for washing dairy-based industrial gear. Henceforth, the wastewater released after the above-mentioned operations comprises a greater concentration of nutrients, chemical oxygen demand, biochemical oxygen demand, total suspended solids, and organic and inorganic contents that can pose severe ecological issues if not managed effectively. The well-known processes such as coagulation–flocculation, membrane technologies, electrocoagulation, and other biological processes such as use of a sequencing batch reactor, upflow sludge anaerobic blanket reactor, etc., that are exploited for the treatment of dairy effluent are extremely energy-exhaustive and acquire huge costs in terms of fabrication and maintenance. In addition, these processes are not competent in totally removing various contaminants that exist in dairy effluent. Accordingly, to decrease the energy need, microbial electrochemical technologies (METs) can be effectively employed, thereby also compensating the purification charges by converting the chemical energy present in impurities into bioelectricity and value-added products. Based on this, the current review article illuminates the application of diverse METs as a suitable substitute for traditional technology for treating dairy wastewater. Additionally, several hindrances on the way to real-world application and techno-economic assessment of revolutionary METs are also deliberated.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference186 articles.

1. Process Engineering for Stable Power Recovery from Dairy Wastewater Using Microbial Fuel Cell;Choudhury;Int. J. Hydrogen Energy,2021

2. Díaz, A.V., and García-Gimeno, R.M. (2018). Descriptive Food Science, IntechOpen.

3. Koca, N. (2018). Technological Approaches for Novel Applications in Dairy Processing, IntechOpen.

4. Dongre, A., Sogani, M., Sonu, K., Syed, Z., and Sharma, G. (2020). Environmental Issues and Sustainable Development, IntechOpen.

5. Strategies for Improvement of Microbial Fuel Cell Performance via Stable Power Generation from Real Dairy Wastewater;Choudhury;Fuel,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3