Abstract
This study explores the quality of data produced by Global Precipitation Measurement (GPM) and the potential of GPM for real-time short-term nowcasting using MATLAB and the Short-Term Ensemble Prediction System (STEPS). Precipitation data obtained by rain gauges during the period 2015 to 2017 were used in this comparative analysis. The results show that the quality of GPM precipitation has different degrees efficacies at the national scale, which were revealed at the performance analysis stage of the study. After data quality checking, five representative precipitation events were selected for nowcasting evaluation. The GPM estimated precipitation compared to a 30 min forecast using STEPS precipitation nowcast results, showing that the GPM precipitation data performed well in nowcasting between 0 to 120 min. However, the accuracy and quality of nowcasting precipitation significantly reduced with increased lead time. A major finding from the study is that the quality of precipitation data can be improved through blending processes such as kriging with external drift and the double-kernel smoothing method, which enhances the quality of nowcast over longer lead times.
Subject
Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献