Research on Optimization of Intermittent Production Process System

Author:

Xiong Jie1,Zhang Ting1,Yang Jian1,Sun Fengjing1,Liu Jianyi2,Wen Yimin2,Pan Gongheng2

Affiliation:

1. Engineering Technology Research Institute, PetroChina Southwest Oil and Gasfield Company, Chengdu 610017, China

2. State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Chengdu 610500, China

Abstract

As gas wells enter later production stages, the formation pressure decreases and liquid accumulates at the bottom of the gas well. The formation pressure is insufficient to lift the accumulated liquid from the bottom of the well to the surface. At this time, a large number of gas wells need to undergo intermittent production to maintain their production capacity. This article focuses on the four stages of intermittent production in gas wells, considering the changes in slip gas holdup, pressure, and gas–liquid flow in and out of tubing and casing, and establishes a transient mathematical model for intermittent production in gas wells in stages. By using the dynamic tracking technology of moving liquid slugs to divide the wellbore grid and solve it in stages, the optimal shut-in time for intermittent production of gas wells was obtained. The transient mathematical model developed for intermittent gas well production achieved a high historical fit accuracy of over 90%. This indicates that the simulation results are in line with the actual situation of gas well intermittent production and can effectively guide intermittent production. The optimized intermittent production system of gas wells has a higher cumulative gas production compared to the original system, achieving the optimization of intermittent production system. This method is beneficial for guiding efficient production of gas wells in low-pressure formations.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3