Development of the Design of Plate with Variable Diameters of Holes and Its Impact on Meat-Grinding Quality and Efficiency

Author:

Bakiyeva Anara1,Yerengaliyev Aman1,Kakimov Aitbek1,Zhumadilova Gulmira1,Abdilova Galiya1,Serikov Erzat1,Suychinov Anuarbek2ORCID,Turagulov Rasul1,Yessimbekov Zhanibek2ORCID

Affiliation:

1. Department of Technological Equipment and Mechanical Engineering, Shakarim University of Semey, Semey 071412, Kazakhstan

2. Kazakh Research Institute of Processing and Food Industry (Semey Branch), Semey 071410, Kazakhstan

Abstract

Meat-grinder plates are critical for efficiently processing meat, significantly influencing the grinding process. This study aimed to develop a meat-grinder plate with variable diameter holes and assess its impact on ground meat quality and processing efficiency. Various meat types (beef, horse meat, mutton, chicken, and pork) were processed using both plate designs: a control plate with a constant hole diameter of 12 mm and a developed plate with featured holes increasing in diameter from periphery to center (8 mm–12 mm–16 mm). The results demonstrate that the developed plate significantly improves the WBC of minced meat, with notable increases in beef (58.3% vs. 57.7%), horse meat (61.8% vs. 56.2%), chicken (51.0% vs. 49.1%), and pork (46.1% vs. 43.6%), indicating a more homogeneous particle size distribution. Yield stress, a critical factor influencing the rheological properties of minced meat, also showed substantial improvements, particularly in poultry (18.9% increase) and pork (31.3% increase). The variable hole design produced a higher proportion of intermediate-sized particles, contributing to a more cohesive texture and potentially enhancing the binding properties of processed meat products. Theoretical calculations based on the Hagen–Poiseuille equation and empirical data confirmed that the new plate design increases the grinder’s productivity by 50%, with average throughput rising from 150 kg/h to 225 kg/h. Additionally, the developed plate reduced power consumption by up to 7.3%, particularly in horse meat processing, highlighting its cost effectiveness for industrial applications. These findings suggest that the variable diameter hole plate design offers substantial improvements in ground meat quality and processing efficiency, with potential implications for industrial meat-processing operations.

Funder

Ministry of Agriculture of Kazakhstan

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3