Cold Plasma Gliding Arc Reactor System for Nanoparticles’ Removal from Diesel Cars’ Exhaust Gases

Author:

Dorosz Agata1ORCID,Penconek Agata1ORCID,Moskal Arkadiusz1ORCID

Affiliation:

1. Faculty of Chemical and Process Engineering, Warsaw University of Technology, Waryńskiego 1, 00-645 Warsaw, Poland

Abstract

The main goal was to investigate the ability of a non-thermal plasma reactor with gliding arc discharge to remove diesel exhaust particulates (DEPs). A conventional knife-shaped LTP GA (low-temperature plasma gliding arc) reactor was utilized. The following three cases were studied: 140 L/min, 70 L/min, and 14 L/min of air drawn through the reactor, and diesel exhaust fumes were sampled continuously. They were assayed in terms of concentration and number particle size distribution. The higher the residence times, the higher the energy input that may be utilized for DEPs’ removal. The reactor performance definitely lowered the concentration of DEPs (250–580 nm) and altered their number size distribution. There was no effect on the number concentration, nor the particle size distribution, of DEPs of 10–250 nm in size. Regarding the effectiveness of DEPs’ removal, decreasing the flow rate from 140 L/min to 70 L/min somehow altered the values. Achieving the airflow of 14 L/min led to a substantial improvement (even to a fourfold increase for 300–480 nm particles). Non-thermal plasma reactors with gliding arc discharge may be successfully adapted to the process of DEP treatment. Their performance may be optimized by adjusting the airflow at the inlet of the reactor to guarantee the longest aerosol residence times and the highest removal efficiency.

Funder

Warsaw University of Technology

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3