Biodecolorization and Biodegradation of Sulfur Black by the Strain Aspergillus sp. DS-28

Author:

Guan Zhipeng1,Wang Yating2,Chen Wentao2,Li Yanchen2,Yue Wenlong2,Cai Zhiqiang2ORCID

Affiliation:

1. SINOPEC Maoming Petrochemical Company Ltd., Maoming 525000, China

2. School of Biological and Food Engineering, Changzhou University, Changzhou 213164, China

Abstract

The textile industry significantly contributes to environmental pollution through its use of synthetic dyes, especially sulfur black, known for its toxicity and resistance to degradation. This research focuses on a fungal strain, Aspergillus sp. strain DS-28, isolated from activated sludge, which exhibits an exceptional ability to biodegrade sulfur black dye. This study systematically assessed the biodegradation capacity of this strain through a series of experiments conducted over a 7-day period. Analytical techniques including high-performance liquid chromatography time-of-flight mass spectrometry (HPLC-TOF/MS), scanning electron microscopy (SEM), X-ray diffraction (XRD), and Fourier-transform infrared spectroscopy (FTIR) were employed to monitor the degradation process. SEM showed a significant reduction in particle size, with surfaces becoming smoother and flatter post treatment. XRD indicated a decrease in the intensity of several chemical bonds, and FTIR analysis demonstrated the enhanced vibrational absorption peaks of benzene ring bonds, with the disappearance of -C-S- and -C-S-S-C- groups. The results demonstrate that Aspergillus sp. DS-28 degrades sulfur black by initiating the oxidative breakdown of its complex structures into simpler forms. This study not only elucidates the biodegradation pathway facilitated by Aspergillus sp. DS-28, but also highlights its potential application in developing eco-friendly waste management strategies for treating dye-contaminated wastewater.

Funder

Maoming Branch Company, SINOPEC

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3