Evaluation of Two-Column Air Separation Processes Based on Exergy Analysis

Author:

Hamayun Muhammad HarisORCID,Ramzan Naveed,Hussain MuridORCID,Faheem MuhammadORCID

Abstract

Cryogenic air separation processes are widely used for the large-scale production of nitrogen and oxygen. The most widely used design for this process involves two distillation columns operating at different pressures. This work focuses on the selection of suitable cryogenic air separation process by evaluating seven alternative designs of the two-column air separation process based on detailed exergy analysis. The feed conditions (500 tons/h, and 50% relative humidity of air), product purities (99 mole% for both nitrogen and oxygen), and operational conditions (pressures of both distillation columns) are kept same in all designs. The two cryogenic distillation columns in each configuration are heat-integrated to eliminate the need for external utilities. Steady-state simulation results are used to calculate the exergy efficiency (%) of each equipment as well as its contribution toward the overall exergy destruction rate (kW) of the process. The results show that the compression section is a major source of exergy destruction, followed by the low-pressure column, and the multi-stream heat exchanger. A Petlyuk-like configuration, labeled as C1, provides the lowest exergy destruction rate.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3