Author:
Hosseini Rahdar Mohammad,Nasiri Fuzhan
Abstract
This paper analyzes a moving grate biomass boiler operating with three alternative waste fuels, including biomass pellets, wood waste, and refuse-derived fuel (RDF) from a combination of thermal, economic, and environmental perspectives. The focus of this paper is on system functionality adaptation to retrofit the current systems operational conditions. A one-dimensional numerical bed model integrated with a black-box overbed model was developed to carefully investigate the fuel bed’s thermal characteristics, as well as the boiler’s output. According to the results, the system operates more efficiently under the biomass pellets feeding and annually generates 548 GJ heat, while it drops significantly in other scenarios. The system was economically evaluated based on a 25-year life cycle cost analysis. Subsequently, an internal rate of return (IRR) of 36% was calculated for biomass pellets, while the value reduced by 50% and 27% regarding wood waste and RDF, respectively. The fuel cost was identified as the main contributor to the total life cycle cost of the heating system, regardless of which feeding fuel was utilized. A long-term environmental impacts assessment of the boiler operation emerged, to show how plant-based fuels can significantly decrease the impacts of climate change that have originated from fossil fuel usage. The current study concludes that all the proposed scenarios are feasible to different degrees, and can extensively benefit a diverse set of energy sectors.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献