Design and Analysis of a Fully Variable Valve Actuation System

Author:

Jiang LongxinORCID,Liu LiangORCID,Peng Xiaowei,Xu ZhaopingORCID

Abstract

With the problem of environmental pollution and energy shortage becoming more and more serious, the fuel efficiency of automobile engines has attracted much attention, and variable valve technology is one of the important technologies to solve this problem. A novel fully variable valve actuation (FVVA) system based on a brushless direct current motor (BLDCM) is designed to achieve fully variable valve adjustment. The system uses a crank-moving guide rod mechanism to convert the rotary motion of the BLDCM into the linear motion of the valve. The fully variable valve system can realize real-time continuous adjustment of valve operating parameters through the motion control of BLDCM, including variable valve timing, variable valve opening duration, and variable lift. A BLDCM and a transmission mechanism for the FVVA system is designed in this paper. In order to better analyze the performance of the system, a dynamic model is established. Then, a three closed-loop control method is adopted to realize position control of the valve. Finally, a complete system model is established to verify the theory conclusions. The results show that the system can realize fully variable valve adjustment.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3