Abstract
Despite the rapid development of 3D printing technology for cement composites, there are still a number of unsolved issues related to extrusion printing. One of them is proper mix design that allows for meeting criteria related to the printing of cementitious materials, such as pumpability, buildability, consistency on the materials, flowability and workability, simultaneously incorporating sustainable development ideas. In the case of mixes for 3D printing, the modification of the composition which increases the overall performance does not always go hand in hand with the reduction of negative environmental impact. The article presents the results of tests of eight mixtures modified with reactive and inert mineral additives designed for 3D printing. The mixes were evaluated in terms of their rheological and mechanical properties as well as environmental impact. Initial test results were verified by printing hollow columns up until collapse. Later, the differences between the compressive strength of standard samples and printed columns were determined. In order to summarize the results, a multi-faceted analysis of the properties of the mixes was carried out, introducing assessment indicators for its individual parameters. The article proves that appropriate material modification of mixes for 3D printing can significantly reduce the negative impact on the environment without hindering required 3D printing properties.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
39 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献