Comparison of the Interrupting Capability of Gas Circuit Breaker According to SF6, g3, and CO2/O2 Mixture

Author:

Lee Woo-YoungORCID,Jun Jang-Un,Oh Ho-SeokORCID,Park Jun-KyuORCID,Oh Yeon-HoORCID,Song Ki-Dong,Jang Hyun-JaeORCID

Abstract

In the study, an interrupting performance test on the 145 kV gas circuit breaker is performed according to three different gases: SF6, g3 (5% NovecTM4710 with 95% CO2), and CO2(70%)/O2(30%) gases. Thanks to research advancements, it is confirmed that CO2 and g3 (5% NovecTM 4710) gases, respectively, have 40% and 75% dielectric strength, compared to that of SF6 gas. The filling pressure and transient recovery voltage criteria of each gas were determined differently in order to compare the maximum interrupting performance of each gas. The pressure of SF6 gas was determined to be 5.5 bar, which is typically used in circuit breakers. The pressure of the other two gases was determined to be 8.0 bar (the maximum available pressure of the test circuit breaker) to find the maximum interrupting performance. Moreover, the rate-of-rise of transient recovery voltage of SF6 was determined as 10 kV/μs, which is the value at the state of maximum interrupting performance of the test circuit breaker with SF6. On the other hand, the rate-of-rise of transient recovery voltages of g3 (5% NovecTM4710 with 95% CO2) and CO2(70%)/O2(30%) gases were, respectively, determined as 4∼5 kV/μs to find the interruption available point. The characteristics of arc conductance, arc current, and arc voltage near the current zero, and post-arc current are analyzed to compare the interrupting performance, according to different arc-quenching gases. The arc current is measured using a current transformer (Rogowski coil), and a signal processing method of the arc current and arc voltage is introduced to increase the reliability of the interrupting performance results. As a result of the test, it is confirmed that the critical arc conductance for all test conditions converged within a certain range and the value is around 0.7 mS. In addition, the critical current slope just before the current zero-crossing during the interrupting process is shown to be 1.8 A/μs between interruption success and failure. Consequently, it is verified that the CO2(70%)/O2(30%) mixture and g3 (5% NovecTM4710 with 95% CO2) have a similar arc extinguishing performance and SF6 has a relatively higher extinguishing performance than that of CO2(70%)/O2(30%) mixture and g3 (5% NovecTM4710 with 95% CO2) under the aforementioned filling pressure and TRV conditions.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3