Quantitative Limit State Assessment of a 3-Inch Carbon Steel Pipe Tee in a Nuclear Power Plant Using a Damage Index

Author:

Kim Sung-WanORCID,Yun Da-Woon,Chang Sung-Jin,Park Dong-Uk,Jeon Bub-GyuORCID

Abstract

Seismic motions are likely to cause large displacements in nuclear power plants because the main mode of their piping systems is dominated by the low-frequency region. Additionally, large relative displacement may occur in the piping systems because their supports are installed in several places, and each support is subjected to different seismic motions. Therefore, to assess the seismic performance of a piping system, the relative displacement repeated by seismic motions must be considered. In this study, in-plane cyclic loading tests were conducted under various constant amplitudes using test specimens composed of SCH 40 3-inch pipes and a tee in the piping system of a nuclear power plant. Additionally, an attempt was made to quantitatively express the failure criteria using a damage index based on the dissipated energy that used the force–displacement and moment–deformation angle relationships. The failure mode was defined as the leakage caused by a through-wall crack, and the failure criteria were compared and analyzed using the damage index of Park and Ang and that of Banon. Additionally, the method of defining the yield point required to calculate the damage index was examined. It was confirmed that the failure criteria of the SCH 40 3-inch carbon steel pipe tee can be effectively expressed using the damage index.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference43 articles.

1. Seismic Analysis of Simplified Piping Systems for the NUPEC Ultimate Strength Piping Test Program;DeGrassi,2005

2. Seismic Fragility Study of Fire Sprinkler Piping Systems with Grooved Fit Joints

3. Study on seismic design of nuclear power plant piping in japan part 3: Component Test Results;Yoshino;Am. Soc. Mech. Eng. Press. Vessel. Pip. Div.,2000

4. Study on seismic design of nuclear power plant piping in japan part 4: Analytical evaluation of piping component tests;Sakakida;Am. Soc. Mech. Eng. Press. Vessel. Pip. Div.,2000

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3