Evaluation of Energy Transition Pathways to Phase out Coal for District Heating in Berlin

Author:

Gonzalez-Salazar MiguelORCID,Langrock Thomas,Koch Christoph,Spieß Jana,Noack Alexander,Witt Markus,Ritzau Michael,Michels Armin

Abstract

As Germany struggles to meet its near-term emissions reduction targets in lagging sectors like heating or transport, the need to identify energy transition pathways beyond power generation is urgent. This paper presents an investigation of tangible and climate-friendly transformation paths to replace the existing coal-fired units used for heat and power generation in Berlin with a largely CO2-free innovative technology mix. Although the literature has extensively covered the decarbonization of the power generation sector on different geographic scales, few studies have focused on the decarbonization of the heat sector in cities with large district heating networks, like Berlin. This paper aims to fill this gap. The proposed methodology combines three key elements: (1) scenario analysis including high-fidelity models of the European power market and the heat demand in Berlin, (2) evaluation of energy potential from low-carbon alternative sources, and (3) a techno-economic portfolio optimization. The results suggest that a coal phase-out by 2030 is feasible without any discontinuities in the provision of heat. Although low-carbon sources could partially substitute coal-based heat, they would not be sufficient to replace it completely. Thus, a gas-based hydrogen-ready combined heat and power plant linked with a power-to-heat plant would be required to fill the gap.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference78 articles.

1. Mitigation pathways compatible with 1.5 °C in the context of sustainable development;Rogeli,2018

2. Global Energy Transformation: A Roadmap to 2050,2018

3. Energy Technology Perspectives 2017: Catalyzing Energy Technology,2017

4. Is a 100% renewable European power system feasible by 2050?

5. European electricity sector decarbonization under different levels of foresight

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3