Predicting the Surveillance Data in a Low-Permeability Carbonate Reservoir with the Machine-Learning Tree Boosting Method and the Time-Segmented Feature Extraction

Author:

Wang Cong,Zhao LishaORCID,Wu Shuhong,Song Xinmin

Abstract

Predictive analysis of the reservoir surveillance data is crucial for the high-efficiency management of oil and gas reservoirs. Here we introduce a new approach to reservoir surveillance that uses the machine learning tree boosting method to forecast production data. In this method, the prediction target is the decline rate of oil production at a given time for one well in the low-permeability carbonate reservoir. The input data to train the model includes reservoir production data (e.g., oil rate, water cut, gas oil ratio (GOR)) and reservoir operation data (e.g., history of choke size and shut-down activity) of 91 producers in this reservoir for the last 20 years. The tree boosting algorithm aims to quantitatively uncover the complicated hidden patterns between the target prediction parameter and other monitored data of a high variety, through state-of-the-art automatic classification and multiple linear regression algorithms. We also introduce a segmentation technique that divides the multivariate time-series production and operation data into a sequence of discrete segments. This feature extraction technique can transfer key features, based on expert knowledge derived from the in-reservoir surveillance, into a data form that is suitable for the machine learning algorithm. Compared with traditional methods, the approach proposed in this article can handle surveillance data in a multivariate time-series form with different strengths of internal correlation. It also provides capabilities for data obtained in multiple wells, measured from multiple sources, as well as of multiple attributes. Our application results indicate that this approach is quite promising in capturing the complicated patterns between the target variable and several other explanatory variables, and thus in predicting the daily oil production rate.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference35 articles.

1. Understanding Machine Learning: From Theory to Algorithms;Shalev-Shwartz,2014

2. Neural Networks for Pattern Recognition;Bishop,1995

3. Gradient-based learning applied to document recognition

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3