Techno-Economic Assessment of Different Heat Exchangers for CO2 Capture

Author:

Aromada Solomon AforkogheneORCID,Eldrup Nils Henrik,Normann Fredrik,Øi Lars Erik

Abstract

We examined the cost implications of selecting six different types of heat exchangers as the lean/rich heat exchanger in an amine-based CO2 capture process. The difference in total capital cost between different capture plant scenarios due to the different costs of the heat exchangers used as the lean/rich heat exchanger, in each case, is in millions of Euros. The gasketed-plate heat exchanger (G-PHE) saves significant space, and it saves considerable costs. Selecting the G-PHE instead of the shell and tube heat exchangers (STHXs) will save €33 million–€39 million in total capital cost (CAPEX), depending on the type of STHX. About €43 million and €2 million in total installed costs (CAPEX) can be saved if the G-PHE is selected instead of the finned double-pipe heat exchanger (FDP-HX) or welded-plate heat exchanger, respectively. The savings in total annual cost is also in millions of Euros/year. Capture costs of €5/tCO2–€6/tCO2 can be saved by replacing conventional STHXs with the G-PHE, and over €6/tCO2 in the case of the FDP-HX. This is significant, and it indicates the importance of clearly stating the exact type and not just the broad classification of heat exchanger used as lean/rich heat exchanger. This is required for cost estimates to be as accurate as possible and allow for appropriate comparisons with other studies. Therefore, the gasketed-plate heat exchanger is recommended to save substantial costs. The CO2 capture costs of all scenarios are most sensitive to the steam cost. The plate and frame heat exchangers (PHEs) scenario’s capture cost can decline from about €77/tCO2 to €59/tCO2 or rise to €95/tCO2.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference78 articles.

1. Capital costs and energy considerations of different alternative stripper configurations for post combustion CO2 capture

2. Assessment of CO2 Capture Technologies and Their Potential to Reduce Costs,2014

3. Overview of Carbon Capture Technology: Microalgal Biorefinery Concept and State-of-the-Art

4. IPCC Special Report on Carbon Dioxide Capture and Storage;Rubin,2005

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3