Lattice and Tubular Steel Wind Turbine Towers. Comparative Structural Investigation

Author:

Stavridou Nafsika,Koltsakis Efthymios,C. Baniotopoulos CharalamposORCID

Abstract

Renewable energy is expected to experience epic growth in the coming decade, which is reflected in the record new installations since 2010. Wind energy, in particular, has proved its leading role among sustainable energy production means, by the accelerating rise in total installed capacity and by its consistently increasing trend. Taking a closer look at the history of wind power development, it is obvious that it has always been a matter of engineering taller turbines with longer blades. An increase in the tower height means an increase in the material used, thereby, impacting the initial construction cost and the total energy consumed. In the present study, a numerical investigation is carried out in order to actively compare conventional cylindrical shell towers with lattice towers in terms of material use, robustness and environmental impact. Lattice structures are proved to be equivalently competitive to conventional cylindrical solutions since they can be designed to be robust enough while being a much lighter tower in terms of material use. With detailed design, lattice wind turbine towers can constitute the new generation of wind turbine towers.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference38 articles.

1. Future of Wind: Deployment, Investment, Technology, Grid Integration and Socio-Economic Aspects,2019

2. Communication from the Commissionto the European Parliament, the Council, the European Economicand Social Committee and the Committee of the Regions: A Policy Framework for Climate and Energy in the Period from 2020 to2030,2014

3. Wind Energy in Europe in 2018: Trends and Statistics,2019

4. Wind in Power;Pineda,2016

5. LCA of renewable energy for electricity generation systems—A review

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3