Rapid Start-Up of the Aerobic Granular Reactor under Low Temperature and the Nutriment Removal Performance of Granules with Different Particle Sizes

Author:

Liang Dongbo,Li Jun,Zheng ZhaomingORCID,Zhang Jing,Wu Yaodong,Li Dongyue,Li Peilin,Zhang Kai

Abstract

The start-up of the aerobic granular sludge (AGS) process under low temperature is challenging. In this study, the sequencing batch reactor (SBR) was fed with synthetic wastewater and the temperature was controlled at 15 ℃. The main components in the synthetic wastewater were sodium acetate and ammonium chloride. The influent chemical oxygen demand (COD) and NH4+-N concentrations were 300 and 60 mg/L, respectively. The AGS was successfully cultivated in 60 days by gradually shortening the settling time. During the stable operation stage (61–100 d), the average effluent COD, NH4+-N, NO2−-N, and NO3−-N concentrations were 47.2, 1.0, 47.2, and 5.1 mg/L, respectively. Meanwhile, the nitrite accumulation rate (NAR) reached 90.6%. Batch test showed that the smaller AGS had higher NH4+-N removal rate while the larger AGS performed higher NAR. The NH4+-N removal rates of R1 (1.0–2.0 mm), R2 (2.0–3.0 mm), and R3 (>3 mm) granules were 0.85, 0.61, and 0.45 g N/(kg VSS·h), respectively. Meanwhile, the NAR of R1, R2, and R3 were 36.2%, 77.2%, and 94.9%, respectively. The obtained results could provide important guidance for the cultivation of AGS in low-temperature wastewater treatment.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3