Secondary Breakup Characteristics and Mechanism of Single Electrified Al/N-Decane Nanofluid Fuel Droplet in Electrostatic Field

Author:

Lu Heng,Li ShengjiORCID,Du Hongzhe,Lu Yibin,Huang XuefengORCID

Abstract

The combustion characteristics of nanofluid fuels have been widely investigated, but rare studies on the atomization were reported. Atomization is an imperative and crucial step to improve the combustion performance of nanofluid fuels, and the secondary breakup of droplets is an important segment for atomization to produce uniform fine droplets and distribute nanoparticles in each droplet. This paper firstly presents the secondary breakup characteristics of single electrified Al/n-decane nanofluid fuel droplets and revealed the mechanism of the secondary breakup. The results demonstrated that fine droplets could be produced in the electrostatic field and Al nanoparticles were distributed in each droplet. Before the breakup, the single electrified droplets experienced surface charge transportation, deformation, and Taylor cone formation. A gradient of the electric field deformed the droplet to produce the Taylor cone. As the Taylor cones were stabilized, the fluid was extruded from the tips of stable Taylor cones to produce jet filament parallel to the electric field direction and correspondingly broke up into fine sub droplets. At the nanoparticle concentration range of 1.0~10 mg/mL, the minimum average diameter of breakup sub droplets could achieve ~55.4 μm at 6.0 mg/mL. The Al nanoparticle concentration had a significant effect on the breakup performance by influencing the physical properties and charging. The order of the Charge-to-Mass ratio magnitude was 10−7~10−5 C/kg. Furthermore, the secondary breakup mechanism of single electrified nanofluid fuel droplets in the uniform electrostatic field was revealed by analyzing the droplet surface charge, deformation, Taylor cone formation, and nanoparticle concentration effect.

Funder

Natural Science Foundation of Zhejiang Province

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3