Enhancing Flow Field Performance of a Small Circulating Water Channel Based on Porous Grid Plate

Author:

Zhang Lu,Shan Xiaobiao,Xie TaoORCID

Abstract

Low-cost and high-efficiency circulating water channels are widely used in the hydrodynamic tests of an underwater device. The current research mainly focuses on obtaining a better velocity uniformity of the test section by optimizing the curve function of the boundary in the contraction section. While, for small underwater device, their hydrodynamic characteristics are sensitive to turbulence. Thus, the circulating water channel, which can obtain the required turbulence characteristics, is urgently needed. A small circulating water channel, which can reduce the turbulence intensity based on a porous grid plate and can be used to test the hydrodynamic characteristics of a small underwater device, is designed. The relationships between porosities and resistance coefficients of a porous grid plate are established. The effects of the honeycomb (porosity and thickness); screen (porosity, number of layers, and spacing); and pumping flow rate on the turbulent characteristics of the test section are studied. The relationships between the parameters and the turbulent characteristics of the test section are established, and the methods to achieve the required flow characteristics of the test section are proposed. Experiments are carried out, and the validity of the obtained results is verified. In this work, the turbulence intensity of the fluid field in the test section can be restrained to 0.0491, which is enough to meet the turbulence requirements for the hydrodynamic test of a small underwater device. This work can provide references for the construction of a hydrodynamic test platform for small underwater devices.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3