Abstract
Today, as fossil fuels are depleted, renewable energy must be used to meet the needs of human beings. One of the renewable energy sources is undoubtedly the solar–geothermal power plant. In this paper, the conventional and advanced, exergo-environmental and exergo-economic analysis of a geothermal–solar hybrid power plant (SGHPP) based on an organic Rankin cycle (ORC) cycle is investigated. In this regard, at first, a conventional analysis was conducted on a standalone geothermal cycle (first mode), as well as a hybrid solar–geothermal cycle (second mode). The results of exergy destruction for simulating the standalone geothermal cycle showed that the ORC turbine with 1050 kW had the highest exergy destruction that was 38% of the total share of destruction. Then, the ORC condenser with 26% of the total share of exergy destruction was in second place. In the hybrid geothermal–solar cycle, the solar panel had the highest environmental impact and about 56% of the total share of exergy destruction. The ORC turbine had about 9% of all exergy destruction. The results of the advanced analysis of exergy in the standalone geothermal cycle showed that the avoidable exergy destruction of the condenser was the highest. In the hybrid geothermal–solar cycle, the solar panel, steam economizer and steam evaporator were ranked first to third from an avoidable exergy destruction perspective. The avoidable exergo-economic destruction of the evaporator and pump were higher than the other components. The hybrid geothermal–solar cycle, steam economizer, solar pane and steam evaporator were ranked first to third, respectively, and they could be modified. The avoidable exergo-environmental destruction of the ORC turbine and the ORC pump were the highest, respectively. In the hybrid geothermal–solar cycle, steam economizers, solar panel and steam evaporators had the highest avoidable exergy destruction, respectively. For the standalone geothermal cycle, the total endogenous exergy destruction and exogenous exergy destruction was 83.61% and 16.39%. Moreover, from an exergo-economic perspective, 89% of the total destruction rate was endogenous and 11% was exogenous. From an exergo-environmental perspective, 88.73% of the destruction rate was endogenous and 11.27% was exogenous. For the hybrid geothermal–solar cycle, the total endogenous and exogenous exergy destruction was 75.08% and 24.92%, respectively. Moreover, 81.82% of the exergo-economic destruction rate was endogenous and 18.82% was exogenous. From an exergo-environmental perspective, 81.19% of the exergy destruction was endogenous and 18.81% was exogenous.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Reference62 articles.
1. Policy of the Islamic Republic of Iran in Optimal Utilization of Renewable Energy Sources;Goodarzi;J. Strateg. Stud. Public Policy,2017
2. Optimization and advanced exergy evaluation of a Clausius-Rankine cycle to be used in solar power systems;Akbari;Modares Mech. Eng.,2017
3. Process simulation and life cycle analysis of biodiesel production
4. Review on life cycle environmental effects of geothermal power generation
5. Exergy, Economic, and Life-Cycle Assessment of ORC System for Waste Heat Recovery in a Natural Gas Internal Combustion Engine