Effect of the Surface Morphology of TiO2 Nanotubes on Photocatalytic Efficacy Using Electron-Transfer-Based Assays and Antimicrobial Tests

Author:

Lia FrederickORCID,Farrugia Clayton,Buccheri Maria Antonietta,Rappazzo Giancarlo,Zammit Edwin,Rizzo Alex,Grech Maurice,Refalo PaulORCID,Abela Stephen

Abstract

The application of titanium oxide nanotubes for the removal of contaminants from freshwater is a rapidly growing scientific interest, especially when it comes to water conservation strategies. In this study we employed four different titanium oxide nanotube surfaces, prepared by a two-electrode anodic oxidation. Two of the surfaces were synthesised in aqueous media, while the other two surfaces were synthesised in ethylene glycol. One of the arrays synthesised in the organic medium was impregnated with silver nanoparticles, while the remaining surfaces were not. The chemical reactivity of the various surfaces was assessed using 2,2-Diphenyl-1-picrylhydrazyl (DPPH) and 2,2’-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) as free electron sensitive probe molecules, in parallel with tannic acid degradation and copper ion reducing capacity. The potential antimicrobial activity of the surfaces was assessed against a panel of microorganisms composed of yeast, fungi, Gram-positive and Gram-negative bacteria. Field emission scanning electron microscopy revealed that surfaces produced in the aqueous medium had a smaller tube length and a smaller tube diameter. It was noted that one of the materials using sodium sulfate as the supporting electrolyte had the most irregular nanostructure morphology with tubes growing to the side rather than vertically. The structural variation of the surfaces directly reflected both the chemical and biological activity, with the nanotubes formed in ethylene glycol showing the fastest rates in the stabilization of DPPH and ABTS radicals, the fastest tannic acid decomposition under various pH conditions and the fastest metal reducing activity. Furthermore, the surface containing silver and its bare counterpart showed the most effective antimicrobial activity, removing approximately 82% of Gram-negative bacteria, 50% of Gram-positive bacteria, 70% of yeast and 40% of fungi, with Gram-negative bacteria being the most susceptible to these surfaces.

Funder

Interreg

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3