The Tractor-Cart System Controller with Fuzzy Logic Rules

Author:

Delavarpour NadiaORCID,Eshkabilov Sulaymon,Bon Thomas,Nowatzki John,Bajwa SreekalaORCID

Abstract

Post-planting operations (e.g., fertilizing, cover crop planting) with a tractor and towed cart in standing crop (e.g., corn) are challenging. Tractor and cart should be kept within a certain boundary region to avoid crop damage. An automatic guidance system on the tractor is the solution of the issue; however, tractor’s auto-guidance does not guarantee the cart clear and exact following of the tractor. There is insufficient research in automatic control of a towed cart. Therefore, this research was undertaken to design a controller to manage lateral and longitudinal positions of a tractor-towed cart. A novel fuzzy logic based adaptive controller algorithm is proposed to control tractor-cart system steering with additional steering torque for the cart, ensuring that the entire system follows the desired trajectory within the set constraints. A hydraulic drive design for the cart was developed with a control principle to closely follow the tractor’s path and minimize damage to the plants. The proposed steering algorithm and designed controller were validated with interchangeable trajectory patterns via simulations in MATLAB/Simulink. The results demonstrated that the performances of the designed hydraulic drive and the accuracy of the proposed control algorithm were appropriate to steer the towed-cart with minimal damages on plant rows.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference39 articles.

1. Precision Autonomous Guidance of Agricultural Vehicles for Future Autonomous Farming

2. Nonlinear Model Predictive Trajectory Control in Tractor-Trailer System for Parallel Guidance in Agricultural Field Operations

3. A lateral Dynamic Model of a Tractor-Trailer Experimental Validationhttp://dotapp7.dot.state.mn.us/research/pdf/199718.pdf

4. Vehicle Dynamics and Control;Rajamani,2012

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3