Stabilization of Sand with Colloidal Nano-Silica Hydrosols

Author:

Ghadr Soheil,Assadi-Langroudi Arya,Hung ChingORCID,O’Kelly Brendan C.ORCID,Bahadori Hadi,Ghodsi Taher

Abstract

Colloidal nano-silica (NS) hydrosols are electrochemically stabilized, polymerized amorphous silica in low viscosity solutions, and in the form of hydrated gels, silica globules or pellicles. Compared to applications in concrete technology, the use of silica-based binders for groundwork applications has received little attention. Silica-based hydrosols impose no known direct risks to humans and are generally courteous to the soil health and ecosystem service functions. Their localized impact on microorganisms however needs to be further investigated. To this end, NS hydrosols have a scope for use as an alternative low-viscose material in groundworks. The current understanding of interactions between NS hydrosols and soil (sand) is, however, confused by the limited availability of experimental evidence concerning undrained static flow and large strain behavior. The contributions, presented in this paper, advance the knowledge through experimental testing, molecular modelling, and micro-analytical measurements. Four grades of colloidal NS (1–15 wt.%) were synthesized for grouting medium-dense sub-angular fine siliceous sand specimens. Consolidated-undrained triaxial compression testing was performed on the base and treated sand for isotropic consolidation over the effective stress range 100–400 kPa. Overall, silica impregnation produced improvements in yield and residual undrained shear strengths, restricted unwelcomed impacts of excess pore water pressure, and led to the formation of generally more dilative, strain-hardening behavior. Steady states and static flow potential indices are also studied as functions of confinement level and viscosity of the NS grout.

Funder

Ministry of Science and Technology, Taiwan

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Advances in Conditioning Techniques for Earthen Materials;Proceedings of ISSMGE TC101—Advanced Laboratory Testing & Nature Inspired Solutions in Engineering (NISE) Joint Symposium;2024

2. Scopes for Use of Indian Agriculture Wastes in Soil Stabilisation;Proceedings of ISSMGE TC101—Advanced Laboratory Testing & Nature Inspired Solutions in Engineering (NISE) Joint Symposium;2024

3. Effect of nano-silica on engineering properties of lime-treated marl soil;Transportation Geotechnics;2023-11

4. Experimental Study on Mechanical Behavior of Sand Improved by Polyurethane Foam;Experimental Techniques;2023-02-14

5. Reducing hydraulic erosion of surficial sand layer by inoculation of cyanobacteria;Proceedings of the Institution of Civil Engineers - Ground Improvement;2022-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3