Application of Sterilization Process for Inactivation of Bacillus Stearothermophilus in Biomedical Waste and Associated Greenhouse Gas Emissions

Author:

Yaman CevatORCID

Abstract

This study investigated the biomedical waste collection, transportation, and treatment activities in the city of Kocaeli, Turkey. As an alternative to incineration technology, a steam autoclave was used to sterilize the biomedical waste. Information regarding the collection, transportation, treatment and associated greenhouse gas emissions (GHG) were also investigated. Prior to sterilization, biological indicator vials containing Bacillus stearothermophilus were placed in the center of the load to ensure that the pathogens were destroyed. GHG emissions were calculated based on the fuel consumed by the biomedical waste collection vehicles and the electricity/natural gas used at the sterilization plant. Results of this work revealed that the total biomedical waste generated per year increased from 1362 tons in 2009 to 2375 tons in 2019. The amount of biomedical waste generated per hospital bed was determined as 1.19 kg.bed−1.day−1. Results show that for efficient sterilization of biomedical wastes, the steam treatment system process should be operated at a contact time of 45 min, a temperature of 150 °C, and at a steam pressure of 5 bar. Biological indicator tests showed that the number of living Bacillus stearothermophilus decreased significantly, with removal rates greater than 6log10. Finally, it was determined that the biomedical waste management activities generated a total of GHG emissions of 5573 ton CO2 equivalency (tCO2-e) from 2009 to 2019. Furthermore, the average global warming factor (GWF) was calculated to be 0.269 tCO2-e per ton of biomedical waste generated. This study showed that the sterilization process is very effective in destroying the pathogens and the management of biomedical waste generates considerable amounts of GHG emissions.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3