Probabilistic Resilience Analysis of the Icelandic Power System under Extreme Weather

Author:

Karangelos EfthymiosORCID,Perkin Samuel,Wehenkel Louis

Abstract

This paper presents a probabilistic methodology for assessing power system resilience, motivated by the extreme weather storm experienced in Iceland in December 2019. The methodology is built on the basis of models and data available to the Icelandic transmission system operator in anticipation of the said storm. We study resilience in terms of the ability of the system to contain further service disruption, while potentially operating with reduced component availability due to the storm impact. To do so, we develop a Monte Carlo assessment framework combining weather-dependent component failure probabilities, enumerated through historical failure rate data and forecasted wind-speed data, with a bi-level attacker-defender optimization model for vulnerability identification. Our findings suggest that the ability of the Icelandic power system to contain service disruption moderately reduces with the storm-induced potential reduction of its available components. In other words, and as also validated in practice, the system is indeed resilient.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Vaffel - a tool for forecasting transmission line failures based on Bayesian updating, renalysis data and medium range weather forecasts;2024 18th International Conference on Probabilistic Methods Applied to Power Systems (PMAPS);2024-06-24

2. N − k Static Security Assessment for Power Transmission System Planning Using Machine Learning;Energies;2024-01-06

3. Fast Contingency Filtering Using Machine Learning for Power System Planning;2023 IEEE 11th International Conference on Smart Energy Grid Engineering (SEGE);2023-08-13

4. A capital light solution to increase power system resilience against wet snow: the Italian experience with anti-torsional devices;2022 AEIT International Annual Conference (AEIT);2022-10-03

5. Analysis of fault data in urban electric distribution grids: lesson learned from Milan, Italy;2022 International Symposium on Power Electronics, Electrical Drives, Automation and Motion (SPEEDAM);2022-06-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3