Analysis of the Supercritical Water Gasification of Cellulose in a Continuous System Using Short Residence Times

Author:

García-Jarana M. BelenORCID,Portela Juan R.,Sánchez-Oneto Jezabel,Martinez de la Ossa Enrique J.ORCID,Al-Duri Bushra

Abstract

Supercritical Water Gasification (SCWG) has the capacity to generate fuel gas effluent from wet biomass without previously having to dry the biomass. However, substantial efforts are still required to make it a feasible and competitive technology for hydrogen production. Biomass contains cellulose, hemicellulose and lignin, so it is essential to understand their behavior in high-pressure systems in order to optimize hydrogen production. As the main component of biomass, cellulose has been extensively studied, and its decomposition has been carried out at both subcritical and supercritical conditions. Most previous works of this model compound were carried out in batch reactors, where reaction times normally take place in a few minutes. However, the present study demonstrates that gasification reactions can achieve efficiency levels of up to 100% in less than ten seconds. The effect of temperature (450–560 °C), the amount of oxidant (from no addition of oxidant to an excess over stoichiometric of 10%, n = 1.1), the initial concentration of organic matter (0.25–2 wt.%) and the addition of a catalyst on the SCWG of cellulose in a continuous tubular reactor at short residence times (from 6 to 10 s) have been studied in this work. Hydrogen yields close to 100% in the gas phase were obtained when operating under optimal conditions. Moreover, a validation of the experimental data has been conducted based on the theoretical data obtained from its kinetics.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3